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Abstract
We discuss a generalized Schrödinger operator in L2(Rd), d = 2, 3, with an
attractive singular interaction supported by a (d − 1)-dimensional hyperplane
and a finite family of points. It can be regarded as a model of a leaky quantum
wire and a family of quantum dots if d = 2, or surface waves in the presence
of a finite number of impurities if d = 3. We analyse the discrete spectrum,
and furthermore, we show that the resonance problem in this setting can be
explicitly solved; by Birman–Schwinger method it is cast into a form similar
to the Friedrichs model.

PACS numbers: 02.30.Tb, 03.65.Xp

1. Introduction

The subject of this paper is a nonrelativistic quantum Hamiltonian in L2(Rd), d = 2, 3, with
a singular interaction supported by a set consisting of two parts. One is a flat manifold of
dimension d − 1, i.e. a line for d = 2 and a plane for d = 3, and the other is a finite family of
points situated in general in the complement to the manifold. The corresponding generalized
Schrödinger operator can be formally written as

−� − αδ(x − �) +
n∑

i=1

β̃iδ(x − y(i)), (1.1)

where α > 0, � := {(x1, 0); x1 ∈ R
d−1} and y(i) ∈ R

d \�; the formal coupling constants of
the d-dimensional δ potentials are marked by tildes because they are not the proper parameters
to be used; we will discuss this point in more detail below.

The first question to be posed is about the significance of such a Hamiltonian. Operators of
the type (1.1) or similar have been studied recently with the aim of describing nanostructures
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which are ‘leaky’ in the sense that they do not neglect quantum tunnelling, cf [7–13] and
references therein, where the physical motivation is discussed in more detail. In this sense
we can regard the present model with d = 2 as an idealized description of a quantum wire
and a collection of quantum dots which are spatially separated but are close enough to each
other so that electrons are able to pass through the classically forbidden zone separating them.
Similarly the three-dimensional case can be given the interpretation of a description of surface
states under the influence of a finite number of point perturbations.

We will first ask about the discrete spectrum of the Hamiltonian (1.1). It will be
demonstrated to be always nonempty and properties of the eigenvalues in terms of the model
parameters will be derived, which complements the existing knowledge about the discrete
spectrum of such generalized Schrödinger operators derived in the mentioned papers and
earlier, e.g., in [3].

Our main concern in this paper, however, is the scattering within our model, in particular,
the question about the existence of the resonances. It is obvious that this is an important
problem for generalized Schrödinger operators with the interaction supported by a noncompact
manifold of a lower dimension, of which little is known at present. The simple form of the
interaction support, � ∪ � with � := {y(i)}, will allow us to analyse the scattering for the
operator (1.1). We will achieve that by using the generalized Birman–Schwinger method
which makes it possible to convert the original PDE problem into a simpler equation which in
the present situation is in part integral, in part algebraic. The main insight is that the method
works not only for the discrete spectrum but also it can be used to find singularities of the
analytically continued resolvent. The problem can then be reduced to a finite-rank perturbation
of eigenvalues embedded in the continuous spectrum, i.e. something which brings to mind the
celebrated Friedrichs model, cf [14] or [6, section 3.2].

We will pay most attention to the two-dimensional case. In the next section, we will
first explain how the operator (1.1) should be properly defined, then we derive a Birman–
Schwinger-type expression for its resolvent. Using this information we discuss in section 3
the discrete spectrum, first for n = 1, then for a pair of point perturbations showing how
embedded eigenvalues due to symmetry may arise and finally for a general n. In section 4,
we tackle the resonance problem using the mentioned analytical continuation of the resolvent.
For simplicity we consider only the cases of single perturbation, where the resonance width is
found to be exponential in terms of the distance between the line and the point, and of a pair
of them to illustrate how resonances can arise from symmetry breaking. We will also treat the
same problem with n = 1 from other point of views: as a scattering of a particle transported
along the line and as a decaying unstable system. Finally in section 5, we investigate the
three-dimensional case. Since the analysis is similar, we restrict ourselves to describing the
features which are different for d = 3.

2. The Hamiltonian for d = 2

2.1. Definition of Hamiltonian

If d = 2 the interaction is supported by �∪� with � := {(x1, 0); x1 ∈ R} and � := {y(i)}ni=1,
where y(i) ∈ R

2 \�. For simplicity we also put L2 ≡ L2(R2). The most natural way to find
a self-adjoint realization of the formal expression (1.1) is to construct the Laplace operator
with appropriate boundary conditions on � ∪ �. To this aim, let us consider functions
f ∈ W

2,2
loc (R

2 \(� ∪ �)) ∩ L2 which are continuous on �. For a sufficiently small positive
number ρ the restriction f �Cρ,i

to the circle Cρ,i ≡ Cρ(yi) := {q ∈ R
2 : |q − y(i)| = ρ} is

well defined. Furthermore, we will say that function f belongs to D(Ḣα,β) if and only if the
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function f11 + f22 on R
2 \(� ∪ �), where fij := ∂2f/∂xi∂xj is an element of L2 and the

following limits:

	i(f ) := − lim
ρ→0

1

ln ρ
f �Cρ,i , 
i(f ) := lim

ρ→0
[f �Cρ,i +	i(f ) ln ρ],

for i = 1, . . . , n, and

	�(f )(x1) := ∂x2f (x1, 0+) − ∂x2f (x1, 0−), 
�(f )(x1) := f (x1, 0)

are finite and satisfy the relations

2πβi	i(f ) = 
i(f ), 	�(f )(x1) = −α
�(f )(x1), (2.1)

where βi ∈ R. For simplicity we put β ≡ (β1, . . . , βn) in the following. Finally, we define
the operator Ḣ α,β : D(Ḣα,β) → L2 acting as

Ḣ α,βf (x) = −�f (x) for x ∈ R
2 \(� ∪ �).

The integration by parts shows that Ḣ α,β is symmetric; let Hα,β denote its closure. To
check that the latter is self-adjoint let us consider an auxiliary operator Ḣ α defined as the
Laplacian with the second one of the boundary conditions (2.1) and the additional restriction
	i(f ) = 
i(f ) = 0 for f ∈ D(Ḣα) and all i = 1, . . . , n. It is straightforward to see that the
operator Ḣ α is symmetric with deficiency indices (n, n), and moreover, that the first equation
of (2.1) determines n symmetric linearly independent boundary conditions; thus using the
standard result [5, theorem XII.30] we conclude that Hα,β is self-adjoint.

Remark 2.1.

(a) The parameters determining the point interactions clearly differ from the β̃i used in (1.1),
for instance, absence of such an interaction formally means that βi = ∞.

(b) We introduce some notation which will be required later. Let Hβ := H0,β be defined as
the Laplacian with the point interactions only. Furthermore, let H̃ α denote the Laplace
operator with the point perturbations (supported by �) removed; this operator formally
corresponds to Hα,∞. It is well known that both these operators are self-adjoint, cf [2].

2.2. The resolvent

To perform spectral analysis ofHα,β we will need its resolvent. Given z ∈ ρ(−�) = C\[0,∞)

denote byR(z) = (−�− z)−1 the free resolvent, which is well known to be an integral operator
in L2 with the kernel

Gz(x, x
′) = 1

(2π)2

∫
R

2

eip(x−x ′)

p2 − z
dp = 1

2π
K0(

√−z|x − x ′|), (2.2)

where K0(·) is the Macdonald function and the function z 	→ √
z has conventionally a cut at

the positive halfline. Moreover, denote by R(z) the integral operator with the same kernel as
R(z) but acting from L2 to W 2,2 ≡ W 2,2(R2); as a map between these spaces it is of course
unitary.

To construct the resolvent of Hα,β we will need two auxiliary Hilbert spaces, H0 := L2(R)

and H1 := C
n, and the corresponding trace maps τ0 : W 2,2 → H0 and τ1 : W 2,2 → H1 which

act as

τ0f := f ��, τ1f := f ��= (f �{y(1)}, . . . , f �{y(n)}),

respectively; in analogy with the previous section the above notation indicates the appropriate
restrictions. By means of τi we can define the canonical embeddings of R(z) to Hi , i.e.

RiL(z) = τiR(z) : L2 → Hi , RLi(z) = [RiL(z)]
∗ : Hi → L2, (2.3)
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and

Rji(z) = τjRLi(z) : Hi → Hj .

They are all expressed naturally through the free Green’s function in their kernels or ‘matrix
elements’, with the restriction of the variable range corresponding to a given Hi .

To express the resolvent of Hα,β we need the operator-valued matrix

(z) = [ij (z)] : H0 ⊕ H1 → H0 ⊕ H1,

where ij (z) : Hj → Hi are the operators given by

ij (z)g := −Rij (z)g for i �= j and g ∈ Hj ,

00(z)f := [α−1 − R00(z)]f if f ∈ H0,

11(z)ϕ := [
sβl

(z)δkl − Gz(y
(k), y(l))(1 − δkl)

]n
k,l=1ϕ for ϕ ∈ H1,

and sβl
(z) = βl + s(z) := βl + 1

2π

(
ln

√
z

2i −ψ(1)
)
, where −ψ(1) ≈ 0.577 is the Euler number,

cf [2, section 1.5].
We will also need the inverse of (z). To this aim let us denote by D the set of z ∈ C

such that (z) is boundedly invertible; as we will see D coincides with the resolvent set
of Hα,β . For z ∈ D the operator 00(z) is invertible and thus it makes sense to define
D(z) ≡ D11(z) : H1 → H1 by

D(z) = 11(z) − 10(z)00(z)
−101(z), (2.4)

which is invertible for z ∈ D; the above operator will be called the reduced determinant of .
By a straightforward calculation one can check that the inverse of (z) is given by

[(z)]−1 : H0 ⊕ H1 → H0 ⊕ H1, (2.5)

with the ‘block elements’ defined by

[(z)]−1
11 = D(z)−1,

[(z)]−1
00 = 00(z)

−1 + 00(z)
−101(z)D(z)−110(z)00(z)

−1,

[(z)]−1
01 = −00(z)

−101(z)D(z)−1,

[(z)]−1
10 = −D(z)−110(z)00(z)

−1;
in the above formulae we use notation ij (z)

−1 for the inverse of ij (z) and [(z)]−1
ij for the

matrix element of [(z)]−1.
With these preliminaries we are ready to state the sought formula for the explicit form of

the resolvent of Hα,β .

Theorem 2.2. For any z ∈ ρ(Hα,β) with Im z > 0 we have

Rα,β(z) ≡ (Hα,β − z)−1 = R(z) +
1∑

i,j=0

RLi(z)[(z)]−1
ij RjL(z). (2.6)

Proof. We employ again the vector notation, 	(f ) ≡ (	1(f ), . . . , 	n(f )) and 
(f ) ≡
(
1(f ), . . . , 
n(f )). We have to check that f ∈ D(Hα,β) holds if and only if f = R̃α,β(z)g

for some g ∈ L2, where R̃α,β(z) denotes the operator on the right-hand side of the last equation.
Suppose that f is of this form. It belongs obviously to W

2,2
loc (R

2 \(� ∪ �)) ∩ L2 because
the same is true for all its components. Combining the definitions of Rij , [(z)]−1

ij , and the
functionals 	i and 
i introduced above with the asymptotic behaviour of the Macdonald
function, specifically

K0(
√−zρ) → −ln ρ − 2πs(z) + O(ρ) for ρ → 0, (2.7)
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we arrive at

2π	(f ) =
1∑

i=0

[(z)]−1
1i RiL(z)g,


(f ) = R1L(z)g −
1∑

i=0

10(z)[(z)]−1
0i RiLg − s(z)

1∑
i=0

[(z)]−1
1i RiL(z)g.

Let us consider separately the components of 	(f ),
(f ) coming from the behaviour of g

at the points of the set � and on �, i.e. for i = 1, 2, which means to define the vectors
	i(f ) := 1

2π [(z)]−1
1i RiLg and


0(f ) := [−10(z)[(z)]−1
00 − s(z)[(z)]−1

10

]
R0Lg,


1(f ) := [
1 − 10(z)[(z)]−1

01 − s(z)[(z)]−1
11

]
R1Lg.

Using the properties of [ij (z)] and its inverse it is straightforward to check that 
i
k(f ) =

2πβk	
i
k(f ) holds for i = 0, 1 and k = 1, . . . , n; the symbols 
i

k(f ),	i
k(f ) mean here

the kth component of 
i(f ),	i(f ) respectively. Similar calculations yield the relation
	�(f ) = −α
�(f ) which shows that f belongs to D(Hα,β), and the converse statement,
namely that any function from D(Hα,β) admits a representation of the form f = R̃α,β(z)g.
To conclude the proof, observe that for a function f ∈ D(Hα,β) which vanishes on � ∪ �

we have (−� − z)f = g. Consequently, R̃α,β(z) = Rα,β(z) is the resolvent of the Laplace
operator in L2 with the boundary conditions (2.1). �

2.3. Another form of the resolvent

With a later purpose in mind it is useful to look at the model in question also from another
point of view, namely as a point-interaction perturbation of the ‘line only’ Hamiltonian H̃ α .
In the same way as above we can check that the resolvent of H̃ α is the integral operator

Rα(z) = R(z) + RL0(z)
−1
00 R0L(z), (2.8)

for any given z ∈ ρ(H̃ α) = C
∖[− 1

4α
2,∞)

. Define now the operators Rα;L1(z) : H1 → L2

and Rα;1L(z) : L2 → H1 by

Rα;1L(z)f = Rα(z)f �� for f ∈ L2 (2.9)

and Rα;L1(z) = R∗
α;1L(z). The Hamiltonian Hα,β is obtained by adding a finite number of

point perturbations to H̃ α . Consequently, the difference of the resolvents Rα,β and Rα is given
by Krein’s formula

Rα,β(z) = Rα(z) + Rα;L1(z)α;11(z)
−1Rα;1L(z),

with

α;11(z)ϕ = (
s
(α)
β,k(z)δkl − G(α)

z (y(k), y(l))(1 − δkl)
)
ϕ for ϕ ∈ H1,

where s
(α)
β,k(z) := βk − limη→0

(
G(α)

z (y(k), y(k)+ η) + 1
2π ln |η|) and G(α)

z is the integral kernel
of the operator Rα(z). In fact, this can be simplified as follows:

Proposition 2.3. For any z ∈ ρ(Hα,β) with Im z > 0 we have

Rα,β(z) = Rα(z) + Rα;L1(z)D(z)−1Rα;1L(z).

Proof. Using the asymptotic behaviour of the Macdonald function we get

s
(α)
β,k(z) = sβk

(z) − (R10(z)00(z)
−1R01(z))kk.

This yields α;11(z) = D(z), and thus the claim of the proposition. �
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3. Spectral analysis

We begin the spectral analysis of Hα,β by localizing the essential spectrum. To this aim
let us consider the auxiliary ‘line-only’ operator H̃ α introduced above. Separating variables
and using the fact that a one-dimensional Laplace operator with a single point interaction
of coupling constant α has just one isolated eigenvalue (recall that α > 0) equal to − 1

4α
2

we find that σ(H̃ α) = σac(H̃ α) = [− 1
4α

2,∞)
. The point interactions in Hα,β represent by

proposition 2.3 a finite-rank perturbation of the resolvent, hence the essential spectrum is
preserved by Weyl’s theorem. Moreover, the explicit expression of the resolvent makes it
possible to employ [19, theorem XIII.19] to conclude that the singularly continuous spectrum
of Hα,β is empty, i.e. that

σess(Hα,β) = σac(Hα,β) = [− 1
4α

2,∞)
. (3.1)

To demonstrate the existence of isolated points of the spectrum for Hα,β and to find the
corresponding eigenvectors we employ the following equivalences:

z ∈ σd(Hα,β) ⇔ 0 ∈ σd((z)), dim ker(z) = dim ker(Hα,β − z), (3.2)

Hα,βφz = zφz ⇔ φz =
1∑

i=0

RLi(z)ηi,z for z ∈ σdisc(Hα,β), (3.3)

where (η0,z, η1,z) ∈ ker(z). They are nothing else than a generalization of the Birman–
Schwinger principle to the situation when the interaction in the Schrödinger operator in
question is singular and supported by a zero-measure set; in the present form they follow from
an abstract result of [18, theorem 3.4]. Thus, to investigate the discrete spectrum it suffices
to study zeros of the operator-valued function z 	→ (z). This will be the starting point for
considerations in the rest of this section.

3.1. Discrete spectrum for one point interaction

We start with the simplest case when the interaction in Hα,β is supported by � and at a single
point y. In such a case, of course, we can choose y = (0, a) with a > 0 without loss of
generality. As indicated above the spectrum in

[− 1
4α

2,∞)
is purely absolutely continuous;

our aim is to show that Hα,β has always exactly one isolated eigenvalue and to investigate its
dependence on the distance a between y and �. In particular, we will show that the eigenvalue
behaviour for large a basically depends on whether the number

εβ = −4 e2(−2πβ+ψ(1)), (3.4)

where −ψ(1) ≈ 0.577 is the Euler number, belongs to the absolutely continuous spectrum or
not; recall that εβ is the only isolated eigenvalue of the point-interaction Hamiltonian Hβ , cf
[2, section 1.5].

Since zeros of (z) determine eigenvalues of Hα,β , it is convenient to rewrite the operator
(z) in a more explicit form. It is straightforward to see that its part 00(z) acts in the
momentum representation as a simple multiplication, and therefore

00(z)f (x) = 1

(2π)1/2

∫
R

[
1

α
− i

2(z − p2)1/2

]
f̃ (p) eipx dp.

Moreover, using the expression for the Green function of the one-dimensional Laplace operator,

1

2π

∫
R

eipx

p2 − z
dp = i

2
√
z

ei
√
z|x|, (3.5)
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we can express the ‘off-diagonal’ operator components as

(01(z)φ)(x) = ν+
z (x)φ, 10(z)f =

∫
R

ν−
z (x)f (x) dx, (3.6)

for φ ∈ H1 and f ∈ H0, respectively, where

ν±
z (x) :=

∫
R

vz(p) e±ipx dp, vz(p) := i

4π

ei(z−p2)1/2a

(z − p2)1/2
. (3.7)

While later we will consider analytic continuation of some of the resolvent ‘constituents’,
with operators (3.6) it is sufficient to stay at the first sheet of z 	→ (z − p2)1/2, i.e. to suppose
that Im(z − p2)1/2 > 0. In that case the functions ν±

z belong to H0, and consequently, the
‘off-diagonal’ operators, ij (z) with i �= j , are well defined.

To proceed further we make two observations. The first is the equivalence

0 ∈ σd((z)) ⇔ 0 ∈ σd(D(z)),

where D(z) is the reduced determinant of (z) given by (2.4); this means that it suffices to
investigate zeros of the map z 	→ D(z). Secondly, as we know that Hα,β is self-adjoint, we
can restrict ourselves to z = −κ2 with κ > 0. For convenience we introduce the abbreviations
̌(κ) := (−κ2), Ď(κ) = D(−κ2), and the analogous symbols for other functions. By a
straightforward computation using formulae (3.7), (3.6) one can check that Ď(κ) is an operator
of multiplication, Ď(κ)ϕ = ď(κ)ϕ, by the number

ď(κ) ≡ ďa(κ) := šβ(κ) − φ̌a(κ),

where

φ̌a(κ) := α

4π

∫
R

e−2(p2+κ2)1/2a

(2(p2 + κ2)1/2 − α)(p2 + κ2)1/2
dp (3.8)

and

šβ(κ) = sβ(−κ2) := β +
1

2π

[
ln

κ

2
− ψ(1)

]
.

Consequently, roots of the equation

ďa(κ) = 0 for κ ∈ (α/2,∞) (3.9)

determine through z = −κ2 the discrete spectrum of Hα,β .
Now we are ready to state a claim which characterizes the discrete spectrum of Hα,β in

the case of a single point perturbation.

Theorem 3.1. For given α > 0 and β ∈ R the operator Hα,β has exactly one isolated
eigenvalue −κ2

a with the eigenvector which can be represented by

const
∫

R
2

(
e−ip2a

2π
+

α e−(p2
1+κ2

a )
1/2a

2
(
p2

1 + κ2
a

)1/2 − α

)
eipx

p2 + κ2
a

dp, (3.10)

where we integrate with respect to p = (p1, p2).

Proof. To check that there is a κa satisfying (3.9), it suffices to investigate the behaviour of ďa

at infinity and near the number 1
2α. Using the above definitions of šβ and φ̌a it is easy to see

that the function κ 	→ ďa(κ) is strictly increasing with the limits ďa(κ) → ±∞ as κ → ∞
and κ → 1

2α+, respectively. Thus, there is exactly one κa ∈ (
1
2α,∞

)
such that ďa(κa) = 0.

Formula (3.10) can be obtained directly from (3.3). �
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Next we want to look at the asymptotic behaviour of the eigenvalue the existence of which
we have just established for large as well as small distance a; in this respect it is convenient
to use the notation Hα,β,a for the operator in question. The answer is again contained in
the behaviour of the functions šβ(·), and φ̌a(·). Given κ ∈ (

1
2α,∞

)
we define the function

a 	→ φ̃κ (a) = φ̌a(κ); using (3.8) it is easy to see that it is decreasing on the indicated interval.
Combining this with the fact that šβ(·) is increasing we come to the conclusion that the function
a 	→ κa is decreasing on (0,∞). To determine its behaviour at the endpoints of the interval
let us note that

lim
a→∞ φ̃κ (a) = 0.

This limit in combination with the relation šβ(
√−εβ ) = 0, where εβ is the point-interaction

eigenvalue given by (3.4), yields

lim
a→∞ κa = √−εβ if

√−εβ ∈ (α/2,∞)

and

lim
a→∞ κa = α

2
if

√−εβ ∈ (−∞, α/2].

Let us turn next to the behaviour a 	→ κa for small a. To this aim we note that for a fixed κ

the expression

φ̌0(κ) := α

4π

∫
R

1

(2(p2 + κ2)1/2 − α)(p2 + κ2)1/2
dp

provides an upper bound for φ̌a(κ). It is straightforward to check that φ̌0(κ) → 0 as κ → ∞
and φ̌0(κ) → ∞ as κ → 1

2α+. It follows that there is a number κ0 ∈ (
1
2α,∞

)
which is a

solution of šβ(κ) − φ̌0(κ) = 0 and provides an upper bound to the function a 	→ κa . These
considerations can be summarized as follows:

Theorem 3.2. The eigenvalue −κ2
a of Hα,β,a is increasing as a function of the distance a.

Moreover, we have

− lim
a→∞ κ2

a = εβ if εβ ∈ (−∞,− 1
4α

2
]

and

− lim
a→∞ κ2

a = − 1
4α

2 if εβ ∈ (− 1
4α

2,∞)
.

On the other hand, −κ2
0 is the best lower bound for −κ2

a , i.e. we have

− lim
a→0

κ2
a = −κ2

0 .

3.2. A mirror-symmetric pair of point interactions

Generally speaking, the case of n = 2 can be treated within the discussion of the discrete
spectrum of Hα,β with n > 1 presented in the next subsection. Here we single out the situation
where the system has a mirror symmetry to illustrate that it can give rise to eigenvalues
embedded in the continuous spectrum. To be specific, we assume that the interaction sites are
located symmetrically with respect to the line �, i.e. x1 = (0, a), x2 = (0,−a) with some
a > 0, and moreover, the coupling strengths are the same, β1 = β2 = β.

As in the case n = 1, the relation between the number − 1
4α

2 and the point-interaction
eigenvalues will be important for spectral properties. Consider the system with the line
component of the interaction removed which is described by the operator Hβ . It has
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σac(Hβ) = [0,∞) and at least one and at most two eigenvalues. Let us denote them µ1, µ2

and assume that µ1 < µ2; if there exists only one eigenvalue we put µ2 := 0. From the
explicit resolvent formula [2, section II.4] it follows that µi = −κ2

i , where κi are solutions of
the equation

šβ(κ)
2 − K0(2κa)

2 = 0, κ > 0,

which implies the inequalities

µ1 < εβ < µ2; (3.11)

they follow also from Dirichlet–Neumann bracketing [19, section XIII.15] and it is useful
to note that the number µ1, µ2 is the eigenvalue corresponding to the symmetric and
antisymmetric eigenfunctions of Hβ , respectively.

To find the isolated eigenvalue of Hα,β , we will employ the BS-principle expressed by
(3.2). Proceeding similarly as in the previous section we show that the number −κ̃2 is an
eigenvalue of Hα,β iff κ̃ is a solution of

ď(κ) = 0 for κ ∈ (α/2,∞), (3.12)

where the function ď(·) means the determinant of Ď(·) being thus given by

ď(κ) = (šβ(κ) + K0(2κa))(šβ(κ) − K0(2κa) − 2φ̌a(κ))

and ď(κ) is again given by (3.8), i.e.

φ̌a(κ) = α

4π

∫
R

e−2(p2+κ2)1/2a

(2(p2 + κ2)1/2 − α)(p2 + κ2)1/2
dp. (3.13)

Now we can describe the point spectrum of Hα,β in the given situation.

Theorem 3.3. Hα,β has always at least one isolated eigenvalue. Moreover,

(i) if − 1
4α

2 < µ2 < 0, then Hα,β has one isolated eigenvalue and one embedded eigenvalue
which is equal to µ2,

(ii) on the other hand, if µ2 < − 1
4α

2, then Hα,β has two isolated eigenvalues the larger of
which is given by µ2.

Proof. Using the behaviour of functions šβ , K0 and φ̌a at infinity and near the number 1
2α we

can conclude that the equation

šβ(κ) − K0(2κa) − 2φ̌a(κ) = 0

coming from the second factor in the spectral condition has for any parameter values exactly
one solution in

(
1
2α,∞

)
which naturally solves also (3.12); this means that the operator

Hα,β has always at least one isolated eigenvalue. Moreover, if µ2 < − 1
4α

2 equation (3.12)
has one more solution given by the number κ2; this completes the proof of (ii). Assume
next − 1

4α
2 < µ2 < 0. As we have already mentioned the number µ2 is the eigenvalue

of Hβ corresponding to eigenfunction ψµ2 antisymmetric w.r.t. �. It is easy to see that
ψµ2 ∈ D(Hα,β) and both the boundary functions 	�

(
ψµ2

)
,
�

(
ψµ2

)
vanish. This implies

Hα,βψµ2 = Hβψµ2 , in other words that ψµ2 is at the same time an eigenvector of Hα,β

corresponding to µ2. �

Remark 3.4. Let us note here that the condition

εβ > − 1
4α

2 (3.14)

is sufficient for µ2 > − 1
4α

2 in view of (3.11), while the converse statement is not true in
general. It may happen when the distance a is sufficiently small that even if εβ is below the
threshold of the essential spectrum, the number µ2 would satisfy µ2 > − 1

4α
2 so according to

theorem 3.3 it will appear in the spectrum of Hα,β as an embedded eigenvalue.
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3.3. Finitely many point interactions

Let us finally turn to analysis of the discrete spectrum in the general case with finitely
many points of interaction and coupling constants determined by components of the vector
β = (β1, . . . , βn). We assume that the perturbations are located at y(i) = (li , ai), where
li ∈ R, ai ∈ R \{0}, and denote by

dij := |y(i) − y(j)|
the distances between them. Our strategy will be similar to before, namely, to recover the
discrete spectrum of Hα,β we will employ the equivalence (3.2) which allows us to describe
eigenvalues of Hα,β in terms of the zeros of z 	→ (z). This in turn can be reduced to the
problem of finding zeros of the n×n matrix D(z) := 11(z)−10(z)00(z)

−101(z) : H1 →
H1 for z negative. To proceed further we introduce the notation j ;0 for the j th component
of 10 and i;j for the corresponding matrix element of 11. We also introduce the following
auxiliary functions of z ∈ C \[− 1

4α
2,∞)

:

�
j

i1
:= j ;0−1

00 0;i1 ,

A
j

i2,...,ik
:=

{
1;i2 · · ·j−1;ij j+1;ij+1 · · ·k;ik if j > 1,
2;i2 · · ·k;ik if j = 1.

A straightforward computation shows that the determinant of D(·) is given by the function
d(·) with the values

d(z) =
∑
π∈Pn

sgn π


 n∑

j=1

(−1)jSj
p1,...,pn

+ 1;p1 · · ·n;pn


 (z), (3.15)

where S
j
p1,...,pn

:= �
j
p1A

j
p2,...,pn

, Pn is the permutation group of (1, . . . , n) and π =
(p1, . . . , pn) is an element of Pn. Since we are interested in the negative part of the spectrum
we put ď(κ) = d(−κ2) and the same convention will be kept for the other expressions.
According to the above general discussion, the eigenvalues of Hα,β are determined by solution
of the equation

ď(κ) = 0 for κ ∈ (α/2,∞). (3.16)

To concretize the function ď(·) we need more information about the functions involved in the
definition of D(·). We have

�̌
j

k(κ) = α

4π

∫
R

e−(p2+κ2)1/2(|ai |+|aj |)

(2(p2 + κ2)1/2 − α)(p2 + κ2)1/2
eip(lj−lk ) dp (3.17)

and

̌j ;k(κ) = − 1

2π
K0(djkκ) for j �= k; (3.18)

recall that the diagonal elements for j � 1 are given by the numbers ̌j ;j (κ) = šβj
(κ). After

these preliminaries we are ready to prove the following theorem:

Theorem 3.5. Let β = (β1, . . . , βn), where βi ∈ R and α > 0. The operator Hα,β has
at least one isolated eigenvalue and at most n of them; they are determined by solutions of
equation (3.16). In particular, if all the numbers −βi are sufficiently large then Hα,β has
exactly n eigenvalues.
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Proof. Let us consider again the operator Ḣ α defined in section 2.1. Since it is symmetric
with deficiency indices (n, n) and Ḣ α � − 1

4α
2, there are at most n eigenvalues of Hα,β ,

cf [20, section 8.4]. The remaining part of the proof will be divided into four steps.

Step 1. We will show that if all the numbers βi are sufficiently large then equation (3.16) has
at least one solution. To this aim we shall investigate the behaviour of ď(·) at infinity and near
the number 1

2α. It is easy to see that for large values of the argument κ , the behaviour of the
function ď is determined by the term

∏n
i=1 ̌i;i = ∏n

i=1 šβi
; this implies

ď(κ) → ∞ as κ → ∞. (3.19)

On the other hand, the function ď has a singularity at 1
2α induced by �̌i

j . This fact
allows us to conclude that if all the numbers βi are sufficiently large then the behaviour
of ď(κ) near 1

2α is dominated by the components of −S
j

j,1,2,...,j−1,j+1,...,n which look like

−�̌
j

jβ1 · · ·βj−1βj+1 · · ·βn. Since they are all negative under our assumption, we arrive at

ď(κ) → −∞ as κ → 1
2α.

Combining this with (3.19) we demonstrate the existence of at least one solution of (3.16) if
the coupling constants βi are sufficiently large.

Step 2. Note further that the functions ̌i;i = šβi
are increasing with respect to each parameter

βi while the other matrix elements of ̌ are independent of all the βi . Combining this with the
minimax principle and the results obtained in the previous step we find that for all β1, . . . , βn

there exists at least one solution of (3.16), and consequently, an eigenvalue of Hα,β .

Step 3. Let κ̃ be a solution to (3.16). From (3.17) and (3.18) in combination with the explicit
expression for šβi

one finds that if all the coupling constants βi → −∞ then κ̃ tends to infinity
or to the number 1

2α. However, the latter is excluded by the monotonicity proved in the
previous step. Thus we obtain

κ̃ → ∞ as βi → −∞ for i = 1, . . . , n.

Step 4. Using the explicit formulae for operators ̌i,j one checks that operator ̌(κ) approaches
Š(κ) in the norm operator sense as κ → ∞, where Š(κ) is the operator-valued diagonal matrix
given by

Š00(κ) = 0,

Š11(κ) = [
šβk

(κ)δkl
]n
k,l=1,

Šij (κ) = 0 for i, j = 0, 1 and i �= j.

Since there exist n solutions of the operator equation Š(κ) = 0 we arrive at the final
conclusion that for −βi sufficiently large the operator Hα,β has the ‘full number’ n of isolated
eigenvalues. �

4. Resonances

Determining the spectrum as a set does not exhaust the interesting properties of the present
model; we now turn to features ‘hidden’ in the continuous component (3.1). We will
concentrate on the negative part of this interval, where in the absence of point perturbations
we have a simple one-dimensional transport: the wavefunctions factorize into the transverse
factor which is the eigenfunction of the one-dimensional point interaction, and the longitudinal
one which is a wave packet moving and spreading in the usual way. If we now add point
perturbation(s) the transport may be affected by tunnelling between the line and these singular
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‘potential wells’, at least if such a process is energetically allowed; our goal stated in the
introduction is to show the existence of ‘tunnelling’ resonances and to find their properties.
For the sake of simplicity we shall consider mostly (with the exception of section 4.2) the case
when the Hamiltonian Hα,β has a single point perturbation.

Following the standard ideology, to find resonances we have to construct the analytical
continuation of z 	→ Rα,β(z) to the second sheet across the cut corresponding to the continuous
spectrum and to find poles of this continuation. Our main insight is that the constituents of the
operator on the right-hand side of (2.6) can be separately continued analytically, and moreover
as we remarked above, for the factors (3.6) in fact no continuation is needed, i.e. we may
suppose that Im(z − p2)1/2 > 0. Thus we have to deal only with the middle factor in the
interaction term of (2.6), in other words, we can extend the Birman–Schwinger principle to
the complex region and to look for zeros in the analytic continuation of D(·). Taking into
account the structure of the auxiliary space H0 ⊕H1 we get in this way a problem reminiscent
of the Friedrichs model, cf [14], or [6, section 3.2] for a review.

4.1. Resonance for Hα,β with a single point interaction

The Friedrichs model analogy suggests treating our problem perturbatively assuming that
in the ‘decoupled’ case which corresponds here to the limit a → ∞ we have the point-
interaction eigenvalue εβ embedded in the continuous spectrum. Following the above sketched
programme we first note that by formulae (3.5), (3.6) and (3.7) the operator-valued function
z 	→ D(z), z ∈ C

∖[− 1
4α,∞

)
is now one dimensional, i.e. a multiplication by the function

da(z) = sβ(z) − φa(z), where φa(z) :=
∫ ∞

0

µ(z, t)

t − z − 1
4α

2
dt, (4.1)

and

µ(z, t) := iα

25π

(α − 2i(z − t)1/2) e2i(z−t)1/2a

t1/2(z − t)1/2
.

Since the numbers 0 and − 1
4α

2 are branching points of the function da we will construct its
continuation across the interval

(− 1
4α

2, 0
)

to a subset 
− of the lower halfplane. Let us first
consider the second component φa . To find its analytical continuation to the second sheet for
λ ∈ (− 1

4α
2, 0

)
we define

µ0(λ, t) := lim
ε→0+

µ(λ + iε, t) and I (λ) := P
∫ ∞

0

µ0(λ, t)

t − λ − 1
4α

2
dt,

with the integral understood in the principal-value sense. We also denote

gα,a(z) := iα

8

e−αa(
z + 1

4α
2
)1/2 for z ∈ 
− ∪ (− 1

4α
2, 0

);
then we are ready to formulate a lemma describing the analytic continuation ofφa; we postpone
its proof to appendix A.

Lemma 4.1. The function z 	→ φa(z) defined in (4.1) can be continued analytically across(− 1
4α

2, 0
)

to a region 
− of the second sheet as follows:

φ0
a(λ) = I (λ) + gα,a(λ) for λ ∈ (− 1

4α
2, 0

)
,

φ−
a (z) = −

∫ ∞

0

µ(z, t)

t − z − 1
4α

2
dt − 2gα,a(z) for z ∈ 
−, Im z < 0.
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Note that apart from fixing a part of its boundary, we have imposed no restrictions on the shape
of 
−. The lemma allows us to construct the sought analytic continuation of da(·) across the
indicated segment of the real axis because the other component has no cut there. It is given
by the function ηa : M 	→ C, where M := {z : Im z > 0} ∪ (− 1

4α
2, 0

) ∪ 
−, acting as

ηa(z) = sβ(z) − φl(z)
a (z),

where l(z) = ± if ±Im z > 0 and l(z) = 0 if z ∈ (− 1
4α

2, 0
)
, respectively; we also put

φ+
a ≡ φa . The problem at hand is now to show that ηa(·) has a second-sheet zero, i.e.

ηa(z) = 0 for some z ∈ 
−. To proceed further it is convenient to put ςβ := √−εβ , and since
we are interested here primarily in large distances a, to make the following reparametrization:

b := e−aςβ and η̃(b, z) := ηa(z) : [0,∞) × M 	→ C;
we then look for zeros of the function η̃ for small values of b. With this notation we have

µ0(λ, t) = α

25π

(α + 2(t − λ)1/2)b2(t−λ)1/2/ςβ

t1/2(t − λ)1/2
, gα,a(b)(λ) = iα

8

bα/ςβ(
λ + 1

4α
2
)1/2 , (4.2)

for λ ∈ (− 1
4α

2, 0
)
, where a(b) := − 1

ςβ
ln b, and similarly for the other constituents of η̃. This

yields our main result in this section.

Theorem 4.2. Assume that εβ > − 1
4α

2. For any b small enough the function η̃(·, ·) has a
zero at a point z(b) ∈ 
− with the real and imaginary parts, z(b) = µ(b) + iν(b), ν(b) < 0,
which in the limit b → 0, i.e. a → ∞, behave in the following way,

µ(b) = εβ + O(b), ν(b) = O(b). (4.3)

Proof. By assumption we have ςβ ∈ (
0, 1

2α
)
. Using formulae (4.2) together with the similar

expressions of µ(z, t) and gα,a(z) in terms of b one can check that for a fixed b ∈ [0,∞)

the function η̃(b, ·) is analytic in M, while with respect to both variables η̃ is just of the C1

class in a neighbourhood of the point (0, εβ). Moreover, it is easy to see that for λ close to εβ
the function φ0

a(b)(·) can be majorized by the expression CbM , where C,M are constants and
M > 1. This implies η̃(0, εβ) = 0 and ∂zη̃(0, εβ) �= 0. Thus, by the implicit function theorem
there exists a neighbourhood U0 of zero and a unique function z(b) : U0 	→ C such that
η̃(b, z(b)) = 0 holds for all b ∈ U0. Since Hα,β is self-adjoint, ν(b) cannot be positive, while
z(b) ∈ (− 1

4α
2, 0

)
for b �= 0 can be excluded by inspecting the explicit form of η̃. Finally, by

the smoothness properties of η̃ both the real and imaginary parts of z(b) are of the C1 class
which yields the behaviour (4.3). �

Remark 4.3. The above theorem confirms what one expects about the behaviour of the
pole using the heuristic idea about tunnelling between the point and the line, namely that the
resonance width (b) = 2ν(b) is exponentially small for a large. It is also natural to ask how
the resonance pole behaves for a general a, in particular, whether it may disappear for a → 0.
Using the explicit formulae of lemma 4.1 one can check the following convergence:

|φ−
a (z)| → 0 as Im z → −∞,

uniformly with respect to a. On the other hand, it is easy to see that

|sβ(z)| → ∞ as Im z → −∞.

This means that the imaginary part of z(a) which represents the solution of sβ(z)−φ−
a (z) = 0

is a function uniformly bounded with respect to a; thus the resonance pole survives the limit
a → 0.
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4.2. Resonances induced by broken symmetry

If there is more than one point interaction our model may exhibit another sort of resonance
coming from broken symmetry. We restrict ourselves to the simplest case n = 2. As seen in
section 3.2, the system with two point interactions placed symmetrically with respect to the line
� and with equal coupling constants β1, β2 may have an embedded eigenvalue for appropriate
parameter values. If we break the symmetry the corresponding resolvent pole will leave the
continuous spectrum and shift to the second sheet of the analytically continued resolvent
giving rise to a resonance. Of course, there are various ways how the mirror symmetry can be
broken.

4.2.1. Symmetry broken by a coupling constant. Suppose first that the geometrical symmetry
remains preserved, i.e. the point interactions are located at x1 = (0, a), x2 = (0,−a) with
a > 0. The symmetry breaking will be due to unequal coupling parameters: assume that the
latter are β ≡ β1 and β2 = β + q, where q ∈ R \{0}. To get a nontrivial result, similarly as in
section 3.2 we suppose that 0 > µ2 > − 1

4α
2.

To find the pole position we proceed as in section 3.2; we write the corresponding 2 × 2
reduced determinant, construct its analytical continuation and look for its zeros at the second
sheet. This leads to the following equation:

ηq(z) = 0, (4.4)

where

ηq(z) := sβ(z)(sβ(z) + q) − K0(2a
√−z)2 − (2sβ(z) + q)φl(z)

a (z) − 2K0(2a
√−z)φl(z)

a (z)

and φl(z)
a (·) has been defined in lemma 4.1. Our aim is to show that the function

η̃(q, z) : R \{0} × M → C defined by η̃(q, z) = ηq(z) has a zero in the lower halfplane; the
set M is determined here as before, namely M = {z : Im z > 0} ∪ 
−. Moreover, we put

g̃(λ) := −igα,a(λ) = α

8

e−αa(
λ + 1

4α
2
)1/2

and use again κ2 := √−µ2. It is also convenient to denote

ϑ ≡ ϑ(κ2) := κ2

š ′
β(κ2) + 2aK ′

0(2aκ2)
,

where the primes stand for the derivatives of the corresponding functions; with this notation
we can make the following claim:

Theorem 4.4. Suppose that µ2 ∈ (− 1
4α

2, 0
)
, then for all nonzero q small enough

equation (4.4) has a solution z(q) ∈ 
− with the real and imaginary parts, z(q) = µ̂(q)+iν̂(q),
which are real-analytic functions of q having the following expansions:

µ̂(q) = µ2 + ϑ(κ2) q + O(q2),

ν̂(q) = −ϑ(κ2)
g̃(µ2)

2
∣∣šβ(κ2) − φ0

a(µ2)
∣∣2 q2 + O(q3).

Proof. As in theorem 4.2 we rely on the implicit function theorem, but η̃ is now jointly
analytic, so is z2. Since š ′

β(κ2) + 2aK ′
0(2aκ2) > 0 the leading term of ν̂(q) is negative. �

Remark 4.5. The solution described in the theorem is not unique, another one comes from
the symmetric eigenfunction of the corresponding Hamiltonian. This can be either a perturbed
eigenvalue if µ1 is isolated, or another resonance if µ1 is also embedded; in the threshold case,
µ1 = − 1

4α
2, the behaviour depends on the sign of q.
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4.2.2. Symmetry broken by distance from the line. In contrast, assume now that the coupling
strengths are the same, β ≡ β1 = β2, while one of the points is shifted in the perpendicular
direction, x1 = (0, a) and x2 = (0,−a − δ), where δ ∈ R. Now the equation determining the
resolvent pole acquires the form

η̆(δ, z) := sβ(z)
2 − K0((2a + δ)

√−z)2 − sβ(z)
(
φ

l(z)
a+δ(z) + φl(z)

a (z)
)

− 2K0((2a + δ)
√−z)φ

l(z)
a+δ/2(z) = 0.

We keep the notation κ2 = √−µ2 and also put

f (δ, κ) = η̆(δ,
√

−κ2).

Theorem 4.6. Assume 0 > µ2 > − 1
4α

2. For all nonzero and sufficiently small δ the function
η̆(δ, z) has a zero at a point z(δ) ∈ 
− with the real and imaginary parts z(δ) = υ(δ) + iι(δ)
admitting the asymptotics

υ(δ) = µ2 − 2κ2κ
′
2δ + O(δ2), ι(δ) = −κ2κ

′′
2 δ

2 + O(δ3), (4.5)

where

κ ′
2 = − 2aK ′

0(2aκ2)

š ′
β(κ2) + 2aK ′

0(2aκ2)
, κ ′

2 = 2f,κδf,δ + f,κκκ
′
2 − f,δδf,κ

f 2
,κ

and f,i, f,ij are appropriate derivatives at the point {δ, κ} = {0, κ2}. Moreover, we have
ι(δ) < 0.

Proof. Similar to theorem 4.2 the argument is straightforward being based on the implicit
function theorem, hence we restrict ourselves to commenting on the inequality ι(δ) < 0. Let
z(δ) ∈ (− 1

4α
2, 0

)
. Without losing generality we can assume δ > 0 because the leading term of

ι(δ) is quadratic in δ, then κ2(δ) = √−z(δ) = κ2 + κ ′
2δ +O(δ2) > κ2. It is easy to see that the

first and the second components of η̆(δ, z(δ)) are real if the number z(δ) is real; furthermore,
using the explicit form for φl(z)

a and properties of the exponential function one can check that

Im f (δ, κ2(δ)) < −2 Im(gα,a+δ/2(z(δ))(šβ(κ2(δ)) + K0((2a + δ)κ2(δ))).

Since we have šβ(κ2(δ)) + K0((2a + δ)κ2(δ)) > 0 the imaginary part of f (δ, κ2(δ)) is strictly
negative. Consequently, z(δ) cannot be a real number, and the possibility Im z(δ) > 0 is
excluded by general spectral properties of self-adjoint operators. �

4.3. Scattering

While resonances in the analytically continued resolvent typically coincide with poles of the
continued scattering matrix, this property does not hold automatically and has to be checked
for each particular system separately. Our next goal is to illustrate it in the present setting,
again in the simplest case with a single point interaction localized at the point y. To this
aim we have thus to construct the S matrix for the pair (Hα,β, H̃ α). Since the operator Hα,β

represents a rank-one perturbation of H̃ α , the existence and completeness of the corresponding
wave operators follows immediately from the Kuroda–Birman theorem. Consequently, the S
matrix is unitary; our aim is to find the on-shell S-matrix in the interval

(− 1
4α

2, 0
)
, i.e. the

corresponding transmission and reflection amplitudes.
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4.3.1. The on-shell S matrix. Using the notation introduced above and proposition 2.3 we
can write the resolvent for Im z > 0 as

Rα,β(z) = Rα(z) + ηa(z)
−1(·, vz)vz, (4.6)

where the rank-one part in the last term is given by vz := Rα;L1(z). We set z = λ + iε and
apply the operator Rα,β(λ + iε) to

ωλ+iε(x) := ei(λ+iε+α2/4)1/2x1 e−α|x2|/2,

then we take the limit ε → 0+ in the sense of distributions. A straightforward, if tedious,
calculation shows that Hα,β has a generalized eigenfunction which for large |x1| behaves as

ψλ(x) ≈ ei(λ+α2/4)1/2x1 e−α|x2|/2 +
i

8
αηa(λ)

−1 e−αa(
λ + 1

4α
2
)1/2 ei(λ+α2/4)1/2|x1| e−α|x2|/2 (4.7)

for each λ ∈ (− 1
4α

2, 0
)
. To be more specific about the derivation of the above formula,

one has to use again (2.3) and to rely on considerations analogous to those in the proof of
lemma 4.1 to arrive at

vλ = lim
ε→0

vλ+iε = RL1(λ) + S(λ), (4.8)

where

S(λ) = Iλ(x1, x2) +
i

8
α

e−α(a+|x2|)/2(
λ + 1

4α
2
)1/2 ei(λ+α2/4)1/2|x1|

and

Iλ(x1, x2) := P
∫ ∞

0

µ0(λ, t)

t − λ − 1
4α

2
e−|x2|(t−λ)1/2

eit1/2x1 dt;

here µ0(λ, t) is defined in section 4.1. Furthermore, note that the first component of (4.8) as
well as Iλ(x1, x2) vanish for |x1| → ∞, and at the same time

lim
ε→0

(ωλ+iε, vλ+iε) = e−αa/2.

In view of the results of section 4.1 and (4.6) this yields formula (4.7) which, in turn, gives
the sought quantities (see also appendix B).

Proposition 4.7. The reflection and transmission amplitudes are given by

R(λ) = T (λ) − 1 = i

8
αηa(λ)

−1 e−αa(
λ + 1

4α
2
)1/2 ;

they have the same pole in the analytical continuation to the region 
− as the continued
resolvent.

4.4. Unstable state decay

It is also useful to look at the resonance problem from the complementary point of view and
to investigate the decay of an unstable state associated with the resonance. Let us consider
again the simplest case n = 1. The previous results tell us that if the ‘unperturbed’ eigenvalue
εβ of Hβ is embedded in

(− 1
4α

2, 0
)

and a is large enough then the corresponding resonance
state has a long halflife. In analogy with the Friedrichs model [4] one might expect that in the
weak-coupling case, which corresponds to a large distance a here, the resonance state would
be similar up to normalization to the eigenvector ξ0 := K0(

√−εβ ·) of Hβ corresponding to
εβ , with the decay law being dominated by the exponential term.
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However, the present model is different in one important aspect. In a typical decay
problem the decaying state belongs to the absolutely continuous subspace of the Hamiltonian
and thus the nondecay probability tends to zero as t → ∞ by the Riemann–Lebesgue lemma
[6]. Here we know from section 3.1 that Hα,β has always an isolated eigenvalue, and it is easy
to see that the corresponding eigenfunction is not orthogonal to ψα,β,a for any a; it is sufficient
to realize that both functions are positive, up to a possible phase factor. Consequently, the
decay law |(ξ0, U(t)ξ0)|2‖ξ0‖−2 has always a nonzero limit as t → ∞ which is equal to
the squared norm of the projection of ξ0‖ξ0‖−1 on the eigensubspace given by ψα,β,a . On
the other hand, this fact does not exclude that the decay is dominated by the natural exponential
term as a → ∞; it may happen that the nonzero limit, which certainly depends on a, is hidden
in the nonexponential error term. This question requires a longer discussion and we postpone
it to a subsequent publication.

5. Three dimensions: a plane and points

In analogy with the two-dimensional case investigated in the previous sections, we are now
going to discuss briefly generalized Schrödinger operators in L2(R3) corresponding to the
formal expression

−� − αδ(x − �) +
n∑

i=1

β̃iδ(x − y(i)), (5.1)

where α > 0, βi ∈ R and � := {(x1, 0); x1 ∈ R
2} is a plane, with y(i) ∈ R

3 \�; for the point
set we will keep the same notation, � := {y(i)}ni=1.

5.1. Definition of Hamiltonian

To write appropriate boundary conditions let us consider functions f ∈ W
2,2
loc (R

3 \(�∪�))∩
L2(R3) which are continuous at �. For any such function we put f �Cρ,i as its restriction to the
points x ∈ Cρ,i ≡ Cρ(yi) := {q ∈ R

3 : |q − y(i)| = ρ}. In analogy with the two-dimensional
case we set

	i(f ) := lim
ρ→0

1

ρ
f �Cρ,i , 
i(f ) := lim

ρ→0
[f �Cρ,i −	i(f )ρ]

for i = 1, . . . , n, and

	�(f )(x1) := ∂x2f (x1, 0+) − ∂x2f (x1, 0−), 
�(f )(x1) := f (x1, 0),

and we assume that the above limits are finite and satisfy the relations

	i(f ) = 4πβi
i(f ), 	�(f )(x1) = −α
�(f )(x1). (5.2)

Then we define Hα,β as the Laplace operator with the boundary conditions given now by (5.2);
it is straightforward to check that it is self-adjoint on its natural domain.

5.2. Resolvent of Hα,β

In the three-dimensional case the free resolvent R(z) with z ∈ ρ(−�) is an integral operator
in L2(R3) having the kernel

Gz(x, x
′) = 1

(2π)3

∫
R

3

eip(x−x ′)

p2 − z
dp = ei

√
z|x − x ′|

4π |x − x ′| . (5.3)
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Now we introduce the auxiliary Hilbert spaces H0 ≡ L2(R2),H1 ≡ C
n and abbreviate

L2 ≡ L2(R3),W 2,2 ≡ W 2,2(R3). By means of the trace maps τ0 : W 2,2 → H0 and
τ1 : W 2,2 → H1 acting as

τ0f := f ��, τ1f := f ��= (
f �{y(1)}, . . . , f �{y(n)}

)
,

we define in analogy with (2.3) the embeddings RiL(z),RLi(z) and Rji . The operator-valued
matrix (z) now takes the form

(z) = [ij (z)] : H0 ⊕ H1 → H0 ⊕ H1,

where ij (z) : Hi → Hj are the operators given by

ij (z)g = −Rij (z)g for i �= j and g ∈ Hj ,

00(z)f = [α−1 − R00(z)]f if f ∈ H0,

11(z)ϕ =
[(

βl +
i
√
z

4π

)
δkl − Gz(y

(k), y(l))(1 − δkl)

]n

k,l=1

ϕ for ϕ ∈ H1.

To describe the inverse of (z) we introduce the reduced determinant D(z) ≡ D11(z) : H1 →
H1 given again by D(z) = 11(z)−10(z)00(z)

−101(z) for z belonging to the resolvent set
of Hα,β . The inverse of (z) is given by [(z)]−1 : H0 ⊕ H1 → H0 ⊕ H1 defined as in (2.5).
Calculations similar to those of theorem 2.2 yield the resolvent formula for z ∈ ρ(Hα,β) and
Im z > 0 in the form

Rα,β(z) ≡ (Hα,β − z)−1 = R(z) +
1∑

i,j=0

RLi(z)[(z)]−1
ij RjL(z). (5.4)

5.3. Spectrum of Hα,β

Since the point interactions give rise to an explicit finite-rank perturbation to the resolvent, we
find easily the absolutely continuous spectrum,

σess(Hα,β) = σac(Hα,β) = [− 1
4α

2,∞)
.

As for the discrete spectrum we start again with the simplest case of a single point perturbation
located at a distance a from �; the coupling constant of this interaction is β ∈ R. As we have
said in the introduction we will concentrate only on the differences coming from the fact that
the relative dimension of the two components of the interaction support is now 2.

Let us denote by Hβ ≡ H0,β the Laplace operator in L2 with the perturbation supported
at y only. It is well known [2] that if β < 0 then the Hamiltonian Hβ has a single eigenvalue
given by

ε̃β = −(4πβ)2.

In turn, if β � 0 the spectrum of Hβ has no isolated point. However, as we will see below,
the operator Hα,β with α > 0 has an eigenvalue even in the latter case. To derive spectral
properties of Hα,β we have to find solutions of the equation Ď(κ) = 0 for κ ∈ (

1
2α,∞

)
, where

the operator Ď(κ) now acts as the multiplication by the following function:

ďa(κ) := β +
κ

4π
− φ̌a(κ)

with

φ̌a(κ) := α

π

∫ ∞

0

e−2(p2+κ2)1/2a

(2(p2 + κ2)1/2 − α)(p2 + κ2)1/2
p dp.
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Since we want to investigate simultaneously the asymptotics of the eigenvalue for large and
small a it is convenient to put Hα,β,a = Hα,β . We have

Theorem 5.1. For any α > 0 and β ∈ R the operator Hα,β,a has exactly one isolated
eigenvalue −κ2

a < − 1
4α

2. Moreover, if β > 0 or ε̃β ∈ [− 1
4α

2,∞)
then

− lim
a→∞ κ2

a = ε̃β , (5.5)

otherwise we have

− lim
a→∞ κ2

a = −1

4
α2. (5.6)

In distinction from the two-dimensional situation we have now

− lim
a→0

κ2
a = −∞. (5.7)

Proof. Equations (5.5) and (5.6) can be obtained by mimicking the arguments employed in the
proofs of theorems 3.1 and 3.2. Using the explicit form for φ̌a one can establish the existence
of a positive C such that Ca−1 < φ̌a(κ). It follows that lima→0 φ̌a(κ) = ∞ which, in turn,
implies (5.7). �

Remark 5.2. In the three-dimensional case one may say that the behaviour of the eigenvalue
for large a depends not only on the relation between −α2/4 and ε̃β ; in the limit it is absorbed
in the threshold also in the case when β � 0 and the discrete spectrum of Hβ is empty.

Proceeding similarly as in the proof of theorem 3.5, we arrive at

Theorem 5.3. Let β = (β1, . . . , βn), where βi ∈ R and α > 0. Operator Hα,β has at least
one isolated eigenvalue and at most n. If all the numbers −βi are sufficiently large then Hα,β

has exactly n eigenvalues.

5.4. Resonances

To recover the resonances for the model in question we can proceed similarly as in
section 4.1. Assume that β < 0 and ε̃β > −α2/4. In analogy with lemma 4.1 we state
that the resolvent of Hα,β has a second-sheet continuation through the interval

(− 1
4α

2, 0
)
. Let

us put ς̃β := √−ε̃β = 4πβ.

Theorem 5.4. Assume ε̃β > − 1
4α

2. For any a sufficiently large the resolvent Rα,β

has the second-sheet pole at a point z(a) with the real and imaginary parts, z(a) =
µ(a) + iν(a), ν(a) < 0, which in the limit a → ∞ behave in the following way:

µ(a) = ε̃β + O(e−aς̃β ), ν(a) = O(e−aς̃β ). (5.8)

Remark 5.5. The resonance pole exists even if the distance is not large. In contrast to the
two-dimensional case, however, the imaginary part of the pole position ν(a) diverges to −∞
as a → 0.

Acknowledgments

SK is grateful for the hospitality in the Department of Theoretical Physics, NPI, Czech
Academy of Sciences, where a part of this work was done. The research has been partially
supported by GAAS under the contract K1010104, by the ESF programme SPECT and by the
Polish Ministry of Scientific Research and Information Technology under the (solicited) grant
no PBZ-Min-008/P03/2003.



8274 P Exner and S Kondej

Appendix A. Proof of lemma 4.1

In view of the edge-of-the-wedge theorem, our aim is to show that

lim
ε→0+

φ±
a (λ ± iε) = φ0

a(λ) for − 1
4α

2 < λ < 0. (A.1)

Given ε > 0 we put z±
λ (ε) := λ ± iε. Let δ(·) be a function of the parameter ε such that

0 < δ(ε) < ε. We use them to define a family of the sets C±
i (ε) in the complex plane, each

of which may be regarded as a graph of a curve,

C1(ε) ≡ C±
1 (ε) := {w = x : x ∈ [δ(ε), ε−1]},

C±
2 (ε) := {w = x ± iε : x ∈ [0, x2] ∪ [x1, ε

−1]}
with

xk ≡ xk(ε) := λ + 1
4α

2 + (−1)k+1δ(ε), k = 1, 2;
furthermore,

C±
3 (ε) := {

w = z±(ε) + 1
4α

2 + δ(ε) eiθ : θ ∈ ∓[0, π ]
}
,

C±
4 (ε) := {w = ε−1 ± iy : y ∈ [0, ε]} ∪ {w = ±iy : y ∈ [δ(ε), ε]},

C±
5 (ε) := {

w = δ(ε) eiθ : ±θ ∈ [
0, 1

4π
]}
.

It is easy to see that from the definitions of C±
l (ε) that each of their unions,

C±(ε) :=
5∑

l=1

C±
l (ε),

is a graph of a closed curve in the closed upper and lower complex halfplanes, respectively,
and that the regions encircled by these loops do not contain singularities of the functions
w 	→ µ

(
z±
λ (ε), w

)(
w − z±

λ (ε) − 1
4α

2
)−1

; thus by the basic theorem about analytic functions
we have ∫

C±(ε)

µ
(
z±
λ (ε), w

)
(
w − z±

λ (ε) − 1
4α

2
) dw = 0. (A.2)

This will be our starting point to check the relation (A.1):

Step 1. Since by assumption δ(ε) → 0 as ε → 0+ so C1(ε) approaches the positive real
halfline, the limits we want to find are equal

lim
ε→0+

φ+
a

(
z+
λ(ε)

) = lim
ε→0+

∫
C1(ε)

µ
(
z+
λ(ε), w

)
w − z+

λ(ε) − 1
4α

2
dw

and

lim
ε→0+

φ−
a (z−

λ (ε)) = − lim
ε→0+

∫
C1(ε)

µ(z−
λ (ε), w)

w − z−
λ (ε) − 1

4α
2

dw + g−
α,a(z

−
λ (ε)).

Step 2. Consider next the integration over w± = t ± iη(ε) ∈ C±
2 (ε). Using the following

obvious convergence relations:(
z±
λ (ε) − w±)1/2 → i(t − λ)1/2 as ε → 0,√
w± → ±√

t as ε → 0,
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we find

lim
ε→0+

∫
C±

2 (ε)

µ
(
z±
λ (ε), w

±)
w± − z±

λ (ε) − α2

4

dw± = ∓P
∫ ∞

0

µ0(λ, t)

t − λ − 1
4α

2
dt. (A.3)

Step 3. In the integration over the circular segments around the poles away of the origin,
w± ∈ C±

3 (ε), we employ the convergence

(
z±
λ (ε) − w±)1/2 → i

2
α as ε → 0

√
w± → ±

√
λ +

1

4
α2 as ε → 0,

which yields

µ
(
z±
λ (ε), w

±) → ± gα,a(λ)

π i
as ε → 0. (A.4)

To proceed further we use the following identities:

∫
C±

3 (ε)

µ
(
z±
λ (ε), w

±)
w± − z±

λ (ε) − 1
4α

2
dw± = ±gα,a(λ)

π i

∫
C±

3 (ε)

1

w± − z±
λ (ε) − 1

4α
2

dw±

+
∫
C±

3 (ε)

µ
(
z±
λ (ε), w

±) ∓ gα,a(λ)(π i)−1

w± − z±
λ (ε) − 1

4α
2

dw±.

Since limε→0
∫
C±

3 (ε)
1

w±−z±
λ (ε)− 1

4 α
2 dw± = ∓π i, the limit as ε → 0+ of the first component in

the above relation equals ∓gα,a(λ). Moreover, in view of the convergence (A.4) and the fact
that the functions involved are continuous at the segment in question we can find a function
ε 	→ ζ(ε) such that ζ(ε) → 0 as ε → 0 and

∣∣µ(
z±
λ (ε), w

±) ∓ gα,a(λ)(π i)−1
∣∣ < ζ(ε) for

w± ∈ C±
3 (ε). Then∫

C±
3 (ε)

∣∣∣∣∣µ
(
z±
λ (ε), w

±) ∓ gα,a(λ)(4i)−1

w± − z±
λ (ε) − 1

4α
2

∣∣∣∣∣ dw± < πζ(ε),

i.e. the second integral in the above identity vanishes as ε → 0. Summarizing the argument
we get

lim
ε→0+

∫
C±

3 (ε)

µ
(
z±
λ (ε), w

±)
w± − z±

λ (ε) − 1
4α

2
dw± = −gα,a(λ).

Steps 4 and 5. Next we note that the limit |w±| µ(z±
λ (ε),w±)

w±−z±
λ (ε)− 1

4 α
2 as ε → 0 implies for the integral

over the ‘vertical’ parts of the integration curve

lim
ε→0+

∫
C±

4 (ε)

µ
(
z±
λ (ε), w

±)
w± − z±

λ (ε) − 1
4α

2
dw± = 0.

Finally, it is also easy to see that the remaining integral over C±
5 (ε) vanishes in the limit ε → 0.

Combining (A.2) with the above results we get

lim
ε→0+

φ±
a

(
z±
λ (ε)

) = φ0
a(λ),

so the function φ0
a is continuous for λ ∈ (− 1

4α
2, 0

)
and the proof is complete.

Appendix B. Lippmann–Schwinger equation

Here we present another possible approach to the scattering problem which we have discussed
in section 4.3.
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B.1. Additive representation of Hα,β

It is also useful to write Hα,β in an additive form which would be reminiscent of the
usual potential interaction, cf [15–17]. To this aim, let us construct for the operator
H̃ α : D(H̃α) → L2 the natural rigged Hilbert space, i.e. the triplet

Hα;− ⊃ L2 ⊃ Hα;+,

where Hα;± are the completion of D(H̃α) in the norm

‖f ‖± := ‖(H̃ α − λ)±1f ‖, where λ < − 1
4α

2.

Then we can define the extension of H̃ α to whole L2; this leads to the map Hα : L2 → Hα;−
which expresses the canonical unitarity between L2 and Hα;−. Let D(Vβ) denote the set of
functions f ∈ W

2,2
loc (R

2 \(� ∪ �)) ∩ L2 such that the limits 	�(f ),
�(f ) satisfy (2.1) and
	i(f ),
i(f ) are finite. Now we define the operator Vβ : D(Vβ) → Hα;− by

Vβψ =
n∑

i=1

ψβi

regδ(· − y(i)), where ψβi

reg :=
{−(2πβi)

−1
i(ψ) if β �= 0
−	i(ψ) if β = 0

Let us note that since Rα;L1 = ∑n
i=1 G

(α)
z ∗ δ(· − y(i)) ∈ L2 the operator Vβ is indeed well

defined as a map acting to Hα;−. Now we can define the sought operator,

H̃ α +̂Vβ : D(H̃α +̂Vβ) → L2, (H̃ α +̂Vβ)f = Hαf + Vβf, (B.1)

with the domain given by

D(H̃α +̂Vβ) = {g ∈ D(Vβ) : Hαg + Vβg ∈ L2}.
With this notation we have the following result:

Lemma B.1. Hα,β = H̃ α +̂Vβ .

Proof. It is easy to see that Hαg + Vβg ∈ L2 if and only if g ∈ D(Hα,β) because only the
boundary conditions given by (2.1) ensure the appropriate compensation of δ(·−y(i)) induced
by Vβ , cf [16]. At the same time, it is also easy to see that (H̃ α +̂Vβ)g(x) = H̃ αg(x) for
x ∈ R

2 \�; this completes the proof. �

B.2. Generalized Lippman–Schwinger equation

In the same vein we now want to find an analogue of the Lippman–Schwinger equation,
cf [1]. The additive representation (B.1) provides an inspiration: it is reasonable to expect that
the generalized eigenvectors ψ±

λ of Hα,β will satisfy

ψ±
λ = ωλ − R±

α (λ)Vβψ
±
λ for λ ∈ [− 1

4α
2,∞)

, (B.2)

where ωλ = limε→0 ωλ+iε are the generalized eigenvectors of Hα introduced in section 4.3.1
and R±

α (λ) are the limits limε→0+ Rα(λ ± iε) in a suitable generalized sense. We have to
emphasize that equation (B.2) has only a formal meaning; our aim is now to replace it by a
mathematically rigorous object. For z±(ε) = λ ± iε define functions ψz±(ε) ∈ L2 by

ψz±(ε) := (Hα,β − z±(ε))−1(H̃ α − z±(ε))ωz+(ε), (B.3)

i.e. the limits ψ±
λ := limε→0 ψz±(ε) in the distributional sense constitute the generalized

eigenvalues of Hα,β . Furthermore, a direct calculation shows the following relation:

ψz±(ε) := ωz+(ε) − Rα(z
±(ε))Vβψz±(ε), (B.4)

which after taking the distributional limit ε → 0 gives the strict meaning to heuristic relation
(B.2). Of course, the limits ψ±

λ belong only locally to L2, however, they satisfy the same
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boundary conditions on � ∪ � as functions from D(Hα,β). This allows us to construct the
extension V̄β of Vβ to ψ±

λ because the latter ‘feels’ only the behaviour of functions on �. With
this notation the relation (B.4) after taking the limit ε → 0 acquires the following form:

ψ±
λ = ωλ − R±

α (λ)V̄βψ
±
λ . (B.5)
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